Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A<sc>bstract</sc> We report measurements of the absolute branching fractions$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)$$, where the latter is measured for the first time. The results are based on a 121.4 fb−1data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energye+e−collider. We reconstruct one$${B}_{s}^{0}$$meson in$${e}^{+}{e}^{-}\to \Upsilon\left(10860\right)\to {B}_{s}^{*}{\overline{B} }_{s}^{*}$$events and measure yields of$${D}_{s}^{+}$$,D0, andD+mesons in the rest of the event. We obtain$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(68.6\pm 7.2\pm 4.0\right)\%$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(21.5\pm 6.1\pm 1.8\right)\%$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)=\left(12.6\pm 4.6\pm 1.3\right)\%$$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(63.4\pm 4.5\pm 2.2\right)\%$$and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(23.9\pm 4.1\pm 1.8\right)\%$$. For the$${B}_{s}^{0}$$production fraction at the Υ(10860), we find$${f}_{s}=\left({21.4}_{-1.7}^{+1.5}\right)\%$$.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            The ratio of branching fractions , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of at the SuperKEKB asymmetric-energy collider. Data is collected at the resonance, and one meson in the decay is fully reconstructed in hadronic decay modes. The accompanying signal meson is reconstructed as using leptonic decays. The normalization decay, , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024more » « less
- 
            Abstract We present measurements of the branching fractions of eight$$ {\overline{B}}^0 $$ →D(*)+K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ ,B−→D(*)0K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ decay channels. The results are based on data from SuperKEKB electron-positron collisions at the Υ(4S) resonance collected with the Belle II detector, corresponding to an integrated luminosity of 362 fb−1. The event yields are extracted from fits to the distributions of the difference between expected and observedBmeson energy, and are efficiency-corrected as a function ofm(K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ ) andm(D(*)$$ {K}_{(S)}^{\left(\ast \right)0} $$ ) in order to avoid dependence on the decay model. These results include the first observation of$$ {\overline{B}}^0 $$ →D+K−$$ {K}_S^0 $$ ,B−→D*0K−$$ {K}_S^0 $$ , and$$ {\overline{B}}^0 $$ →D*+K−$$ {K}_S^0 $$ decays and a significant improvement in the precision of the other channels compared to previous measurements. The helicity-angle distributions and the invariant mass distributions of theK−$$ {K}_{(S)}^{\left(\ast \right)0} $$ systems are compatible with quasi-two-body decays via a resonant transition with spin-parityJP= 1−for theK−$$ {K}_S^0 $$ systems andJP= 1+for theK−K*0systems. We also present measurements of the branching fractions of four$$ {\overline{B}}^0 $$ →D(*)+$$ {D}_s^{-} $$ ,B−→D(*)0$$ {D}_s^{-} $$ decay channels with a precision compatible to the current world averages.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
